
Paweł Rajba
pawel@ii.uni.wroc.pl
http://kursy24.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Authentication
 Server-Level security
 Database-Level security
 Encryption in a database
 Communication with a database
 SQL Server Audit
 Policy based management
 Other imporant topics

 Windows
 Mixed mode

 Basic operation: create a login
 From MGMT studio (let’s see)
 CREATE LOGIN statement

 Logins can be:
 Local (if mixed mode)
 From Windows
▪ For users
▪ For groups (!)

 Some options
 MUST_CHANGE, DEFAULT_DATABASE = „…”,

CHECK_EXPIRATION = ON, CHECK_POLICY = ON
▪ If there is no mixed mode, one can create a local login, but

policies are not checked

 Server-Roles (actually instance level)
 A lot of builtin roles
▪ sysadmin – the highest level

▪ dbcreator

▪ diskadmin

▪ …

 Basic operations:
▪ CREATE SERVER ROLE [SomeRole]
▪ It is possibility to create custom server roles

▪ ALTER SERVER ROLE [sysadmin] ADD MEMBER [auser]

 List permissions for role
▪ sp_srvrolepermission 'securityadmin'

 Managing permissions

 Open Server properties

 Change tab to permissions

 Let’s review what is there

 Tip: one can always click „Script” button to
see what commands are behind

 Database users

 Basic operation:

▪ CREATE USER [TestUser] FOR LOGIN [CustomUser]
WITH DEFAULT SCHEMA=[dbo]
▪ After user is created there is no permission associated

 Common way to give permission is to assign a role

 Database roles
 There are 2 types:

▪ Fixed (predefined)
▪ Flexible (defined by user)

 How to create a role?
▪ From SQL

▪ CREATE ROLE rolename
▪ ALTER ROLE rolename

ADD MEMBER {username|rolename}

▪ From MGMT Studio

 List of permissions for role:
▪ sp_dbfixedrolepermission rolename

 More operations and possibilities
▪ http://technet.microsoft.com/en-us/library/ms189121(v=sql.110).aspx

 Let’s see database roles
 Application roles

 Gives possibility to assign permission to a specific application
 After connection, a sp_setapprole procedure is invoked

▪ More on http://technet.microsoft.com/en-us/library/ms190998(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms189121(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/ms190998(v=sql.110).aspx

 Managing permissions
 From MGMT Studio
▪ Open Database properties
▪ Change tab to permissions
▪ Let’s review what is there

 From SQL
▪ GRANT privilege_name_list

[ON object_name]
TO {user_name |PUBLIC |role_name}
[WITH GRANT OPTION]

▪ REVOKE privilege_name_list
[ON object_name]
FROM {user_name |PUBLIC |role_name}

 Schema
 Consider as security container for different objects

 Allows to organize objects as well
 Basic operation:
 CREATE SCHEMA <Warehouse>

[AUTHORIZATION <User>]
▪ Authorization defines an owner

 Accesing schemas: [schema].[object]
▪ E.g. CREATE TABLE [Warehouse].[Invoice] (…)

 Default schema: usually [dbo] but can be changed in
user properties

 Ownership
 Principles
▪ Owner manages objects he/she owns and anyone can revoke

him/her these privileges

▪ There is no possibility to drop user if it owns something

 Change ownership
▪ ALTER AUTHORIZATION ON <Object> TO <User>

 More
▪ ALTER AUTHORIZATION
▪ http://technet.microsoft.com/en-us/library/ms187359(v=sql.110).aspx

▪ http://msdn.microsoft.com/en-us/library/ms187359.aspx

http://technet.microsoft.com/en-us/library/ms187359(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms187359.aspx

 Ownership chains

 Let’s assume that there is a chain of calls
O1O2O3…On
and all Oi has the same owner

 Then permissions are checked only on access to O1

 Let’s see the consequences

 Practical example: roles usage

 There is default good way to give an EXECUTE
permission to a user

 The solution
▪ CREATE ROLE db_executor
GRANT EXECUTE TO db_executor
EXEC sp_addrolemember 'db_executor', 'username'

 Practical example: the ownership chain consequences
CREATE TABLE SomeData (Number INT)
GO

CREATE PROCEDURE ShowSomeData AS SELECT * FROM SomeData
GO

--ALTER AUTHORIZATION ON SomeData TO dbo --SCHEMA OWNER
--ALTER AUTHORIZATION ON ShowSomeData TO dbo --SCHEMA OWNER
--GO

SELECT * FROM sys.all_objects WHERE name LIKE '%SomeData'
GO

GRANT EXECUTE ON ShowSomeData TO Test
DENY SELECT ON SomeData TO Test
GO

EXECUTE AS USER = 'Test'
GO
SELECT * FROM SomeData
GO
EXEC ShowSomeData
GO
REVERT
GO

 There are situations in which protecting
access to a database is not enough
 Someone breach this access level protection

 Access rights are assigned in a wrong way

 Backup files are stolen

 Protection of filesystem is compromised

 And many others...
 If we have a very sensitive data, encryption in

a database is a one more layer of defense

 Encryption can be
achieved through
different ways

 Every way is implied by
a different chain of keys

 Every way has pros and
cons, so should be
evaluated according to
the requirements

More:

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

 Asymmetric Keys
 Symmetric Keys
 Certificates
 Extensible Key Management (EKM)

 Since SQL Server 2008

 Gives a possibility to manage some cryptographic
keys from hierarchy by an external source such as
Hardware Security Module (HSM)

 Column Enryption: data is encrypted explicitly

 Applications and users are impacted

 One can choose what exactly should be encrypted
– no overhead for encryption less sensitive data

 TDE: the whole database is encrypted

 Encryption is hidden and transparent, so if one can
connect, one can see the data

 Everything is encrypted, also less sensitive data

 The choice depends on business needs

 This is supported by set of built-in functions and procedures
together with key hierarchy

 Operations are performed manually
 Encrypted data needs to be stored in a varbinary column type
 Main steps

 Create database master key for every database
▪ Notice: service master key has been created when the instance has been created

 Create a certificate to protect keys
 Create a symmetric key which is protected by the certificate created in

the previous step
 Enjoy encrypting data: open the symmetric key, encrypt the data, close

the key
 Decryption is similar to encryption, but a function for decryption

should be used

USE Test

CREATE TABLE Person
(

ID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
CreditCard VARBINARY(200)

)
GO

INSERT INTO Person (ID, FirstName, LastName) VALUES(1, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(2, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(3, 'J1', 'K1');
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE CertForTest WITH SUBJECT='Test'
GO

CREATE SYMMETRIC KEY CreditCardKey WITH ALGORITHM=TRIPLE_DES ENCRYPTION BY CERTIFICATE CertForTest
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '11111') WHERE ID=1;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '22222') WHERE ID=2;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '33333') WHERE ID=3;
CLOSE SYMMETRIC KEY CreditCardKey
GO

SELECT * FROM Person
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
SELECT ID, FirstName, LastName, CONVERT(VARCHAR, DECRYPTBYKEY(CreditCard)) [Credit Card] FROM Person
CLOSE SYMMETRIC KEY CreditCardKey
GO

 TDE is one of usages of encryption by symmetric keys
 There is whole database encrypted by a symmetric key called

database encryption key
 Database encryption key is protected by certificate which is

protected by database master key or asymmetric key from EKM
 Available only on Enterprise Edition or Developer Edition
 Provides query optimization
 Main steps

 Create master key encryption password
 Create a certificate
 Backup the certificate
 Create a database encryption symmetric key
 Alter the database to set encryption on
 Optionally monitor the encryption process

 More: http://msdn.microsoft.com/en-us/library/bb934049.aspx

http://msdn.microsoft.com/en-us/library/bb934049.aspx

USE master

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE TestDatabaseServerCertificate WITH SUBJECT='Test Certificate'
GO

BACKUP CERTIFICATE TestDatabaseServerCertificate
TO FILE ='C:\Temp\TestDatabaseServerCertificate'
WITH PRIVATE KEY(

FILE = 'C:\Temp\TestDatabaseServerCertificate.private',
ENCRYPTION BY PASSWORD = 'AnotherPassword')

USE Test

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TestDatabaseServerCertificate
GO

ALTER DATABASE Test SET ENCRYPTION ON
GO

SELECT DB_NAME(database_id), encryption_state, key_algorithm, key_length
FROM sys.dm_database_encryption_keys
GO

 DES
 Triple DES
 TRIPLE_DES_3KEY
 RC2
 RC4
 128-bit RC4
 DESX
 128-bit AES
 192-bit AES
 256-bit AES

 More: http://technet.microsoft.com/en-us/library/ms345262(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms345262(v=sql.110).aspx

 When it comes to communication we consider two
challenges
 Storing credentials to a database server in a secure way

▪ This was covered in OWASP Top 10 topic

 Encrypting communication channel
▪ SQL Server supports encrypting connection using SSL

▪ A valid certificate is required

▪ DEMO
▪ Open: Configuration Tools SQL Server Configuration Manager

▪ Open: Properties for SQL Server Network Configuration

▪ More
▪ http://msdn.microsoft.com/en-us/library/ms191192(v=sql.110).aspx

▪ http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

http://msdn.microsoft.com/en-us/library/ms191192(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

 It is a mechanism which allows to monitor who
is doing what on which objects

 There a lot of possibilities what can be audited
 It is based on Extended Events, new feature

since SQL Server 2008

 Audit is specialized usage of Extended Events

 DEMO: Let’s create Server-Level audit
 MGMT Security Audits
▪ Create an audit DatabaseRoleMemberChange

 MGMT Security Server Audit Specifications
▪ Create a specification DatabaseRoleMemberChange related

to DatabaseRoleMemberChange event

 Add any user to any role
▪ USE Test; ALTER ROLE db_owner ADD MEMBER test

 MGMT Security Audits
▪ Pick the audit

▪ Choose View Audits Logs option

 DEMO: Let’s create Database-Level audit
 MGMT Security Audits
▪ Create TestDatabaseSelect audit

 MGMT Test database Security
Server Audit Specification
▪ Create TestDatabaseSelect specification on
▪ SELECT event

▪ Osoba table

▪ [public] role

 Perform a select on the Osoba table in Test DB

 View TestDatabaseSelect audit

 There is another way to see audit entries
which is based on review files

 DEMO
 SELECT * INTO Test.dbo.SQLAudits
FROM sys.fn_get_audit_file(

'C:\Temp\TestDatabase*.sqlaudit',Default, Default);

 SELECT * FROM Test.dbo.SQLAudits

 Allows to apply and force policies and rules
 Let’s see some examples
 MGMT Management Policy Management
 Review Facets
 Create a policy RecoveryModelFull for ensuring that every

database has a full recovery model
▪ Create a condition using Database Options facet
▪ Create a policy based on that condition and evaluate it

 Create a policy for ensuring that no table is created in dbo
schema (do the same for procedure)
▪ Create a condition using Table facet (analogously Stored Procedure)
▪ Create a policy based on that condition and evaluate it
▪ Try to enable that policy and try to create an object in that schema

▪ E.g. CREATE PROCEDURE dbo.GetServerName AS SELECT @@SERVERNAME

 SQL Profiler and ALTER TRACE risks
 Backups and recovery
 Backup types

 Transaction logs and recovery model
 High Availability
 Failover clustering

 Database mirroring

 Log shipping

 Replication

