Pawet Rajba
pawel@ii.uni.wroc.pl
http://kursy24.eu/

Application Security

Database security

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

Authentication

Server-Level security
Database-Level security
Encryption in a database
Communication with a database
SQL Server Audit

Policy based management
Other imporant topics

Authentication modes

Windows
Mixed mode

Server-level security

Basic operation: create a login
Fromm MGMT studio (let’s see)

CREATE LOGIN statement
Logins can be:

Local (if mixed mode)

From Windows
For users
For groups (!)
Some options

MUST_CHANGE, DEFAULT_DATABASE =,...",
CHECK_EXPIRATION = ON, CHECK_POLICY =ON

If there is no mixed mode, one can create a local login, but
policies are not checked

Server-level security

Server-Roles (actually instance level)

A lot of builtin roles
sysadmin —the highest level
dbcreator
diskadmin

Basic operations:
CREATE SERVER ROLE [SomeRole]

It is possibility to create custom server roles

ALTER SERVER ROLE [sysadmin] ADD MEMBER [auser]

List permissions for role
sp_srvrolepermission 'securityadmin'’

Server-level security

Managing permissions
Open Server properties
Change tab to permissions
Let's review what is there

Tip: one can always click ,Script” button to
see what commands are behind

Database-level security

Database users

Basic operation:

CREATE USER [TestUser] FOR LOGIN [CustomUser]
WITH DEFAULT SCHEMA=[dbo]

After user is created there is no permission associated

Common way to give permission is to assign a role

Database-level security

Database roles

There are 2 types:
Fixed (predefined)
Flexible (defined by user)
How to create a role?

From SQL
CREATE ROLE rolename

ALTER ROLE rolename
ADD MEMBER {username|rolename}

From MGMT Studio

List of permissions for role:
sp_dbfixedrolepermission rolename

More operations and possibilities
http://technet.microsoft.com/en-us/library/msi189121(v=sql.110).aspx

Let's see database roles

Applicationroles

Gives possibility to assign permission to a specific application

After connection, a sp_setapprole procedure is invoked
More on http://technet.microsoft.com/en-us/library/msigog9q8(v=sqgl.110).aspx

http://technet.microsoft.com/en-us/library/ms189121(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/ms190998(v=sql.110).aspx

Database-level security

Managing permissions
From MGMT Studio

Open Database properties
Change tab to permissions
Let's review what is there

From SQL

GRANT privilege_name_list

[ON object_name]

TO {user_name |PUBLIC |role_name}
[WITH GRANT OPTION]

REVOKE privilege_name_list
[ON object_name]
FROM {user_name |PUBLIC |[role_name}

Database-level security

Schema

Consider as security container for different objects

Allows to organize objects as well
Basic operation:
CREATE SCHEMA <Warehouse>
[AUTHORIZATION <User>]
Authorization defines an owner
Accesing schemas: [schema].[object]
E.g. CREATE TABLE [Warehouse].[Invoice] (...)

Default schema: usually [dbo] but can be changed in
user properties

Database-level security

Ownership

Principles

Owner manages objects he/she owns and anyone can revoke
him/her these privileges

There is no possibility to drop user if it owns something
Change ownership

ALTER AUTHORIZATION ON <Object>TO <User>
More

ALTER AUTHORIZATION

http://technet.microsoft.com/en-us/library/ms187359(v=sql.110).aspx

http://msdn.microsoft.com/en-us/library/ms187359.aspx

http://technet.microsoft.com/en-us/library/ms187359(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms187359.aspx

Database-level security

Ownership chains

Let’s assume that there is a chain of calls
012022>03-2...20n
and all Oi has the same owner

Then permissions are checked only on access to O1
Let’s see the consequences

Database-level security

Practical example: roles usage

There is default good way to give an EXECUTE
permission to a user

The solution

CREATE ROLE db_executor
GRANT EXECUTE TO db executor
EXEC sp_addrolemember 'db_executor', 'username’

Database-level security

Practical example: the ownership chain consequences

CREATE TABLE SomeData (Number INT)
GO

CREATE PROCEDURE ShowSomeData AS SELECT * FROM SomeData
GO

--ALTER AUTHORIZATION ON SomeData TO dbo --SCHEMA OWNER
--ALTER AUTHORIZATION ON ShowSomeData TO dbo --SCHEMA OWNER
--GO

SELECT * FROM sys.all objects WHERE name LIKE '%SomeData’
GO

GRANT EXECUTE ON ShowSomeData TO Test
DENY SELECT ON SomeData TO Test
GO

EXECUTE AS USER = 'Test'
GO

SELECT * FROM SomeData
GO

EXEC ShowSomeData

GO

REVERT

GO

Encryption in a database

There are situations in which protecting
access to a database is not enough
Someone breach this access level protection
Access rights are assigned in a wrong way
Backup files are stolen
Protection of filesystem is compromised
And many others...

If we have a very sensitive data, encryption in
a database is a one more layer of defense

Encryption Hierarchy

Windows Cperating
System Level
Data Protection API

|]
{DPAPI) protects the
y I Service Master Key,
L |
a ‘ I e V e t rO U Database Master Key is Arrows show the mast
protected by the Service commeon encryption

Database Master Master Key, which is configurations. Other
Keys are created created by SQL % combinations are possible.
by using the Service Server Setup.
Dotted lines show architecture

that allows Transparent Data
Encryption.

different ways
Every way is implied by

a different chain of keys
Every way has pros and
cons, so should be
evaluated according to
the requirements

Database Master Key
\

\
\
\
ate'y

Password Certific
Asymmetric
@ Key
= ‘

Passwaord

Encrypted

hY EKM
‘\ Module

Password

TIP: To help ensure gooad An Extensible Key

MOI’EZ perfarmance, avold encrypting Management (EKM)
. . data by using certificates or module holds symmetric or
http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx acymimatiic keye. asymmetric keys

putside of the Database Engine.

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

Encryption hierarchy components

Asymmetric Keys
Symmetric Keys
Certificates
Extensible Key Management (EKM)
Since SQL Server 2008
Gives a possibility to manage some cryptographic

keys from hierarchy by an external source such as
Hardware Security Module (HSM)

Column Encryption vs.

Transparent

Data Encryption

Column Enryption: data is encrypted explicitly

Applications and users are impacted

One can choo
— no overheac

TDE: the who

se what exactly should be encrypted
for encryption less sensitive data

e database is encrypted

Encryption is

nidden and transparent, so if one can

connect, one can see the data

Everything is encrypted, also less sensitive data

The choice de

pends on business needs

Column Encryption

This is supported by set of built-in functions and procedures
together with key hierarchy

Operations are performed manually

Encrypted data needs to be stored in a varbinary column type
Main steps

Create database master key for every database
Notice: service master key has been created when the instance has been created
Create a certificate to protect keys

Create a symmetric key which is protected by the certificate created in
the previous step

Enjoy encrypting data: open the symmetric key, encrypt the data, close
the key
Decryption is similar to encryption, but a function for decryption
should be used

Example

USE Test

CREATE
(
ID

TABLE Person

INT PRIMARY KEY,

FirstName VARCHAR(50),
LastName VARCHAR(50),
CreditCard VARBINARY(200)

)
GO

INSERT
INSERT
INSERT
GO

CREATE
GO

CREATE
GO

CREATE
GO

INTO Person (ID, FirstName, LastName) VALUES(1, 'J1', 'K1');
INTO Person (ID, FirstName, LastName) VALUES(2, 'J1', 'K1');
INTO Person (ID, FirstName, LastName) VALUES(3, 'J1', 'K1');

MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
CERTIFICATE CertForTest WITH SUBJECT='Test'

SYMMETRIC KEY CreditCardKey WITH ALGORITHM=TRIPLE_DES ENCRYPTION BY CERTIFICATE CertForTest

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest

UPDATE
UPDATE
UPDATE

Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '11111') WHERE ID=1;
Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '22222"') WHERE ID=2;
Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '33333') WHERE ID=3;

CLOSE SYMMETRIC KEY CreditCardKey

GO

SELECT
GO

* FROM Person

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest

SELECT

ID, FirstName, LastName, CONVERT(VARCHAR, DECRYPTBYKEY(CreditCard)) [Credit Card] FROM Person

CLOSE SYMMETRIC KEY CreditCardKey

GO

Transparent Data Encryption

TDE is one of usages of encryption by symmetric keys
There is whole database encrypted by a symmetric key called
database encryption key

Database encryption key is protected by certificate which is
protected by database master key or asymmetric key from EKM
Available only on Enterprise Edition or Developer Edition
Provides query optimization
Main steps

Create master key encryption password

Create a certificate

Backup the certificate

Create a database encryption symmetric key

Alter the database to set encryption on

Optionally monitor the encryption process

More: http://msdn.microsoft.com/en-us/library/bbg34049.aspx

http://msdn.microsoft.com/en-us/library/bb934049.aspx

Example

USE master

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword’
GO

CREATE CERTIFICATE TestDatabaseServerCertificate WITH SUBJECT='Test Certificate’
GO

BACKUP CERTIFICATE TestDatabaseServerCertificate

TO FILE ='C:\Temp\TestDatabaseServerCertificate’

WITH PRIVATE KEY(
FILE = 'C:\Temp\TestDatabaseServerCertificate.private',
ENCRYPTION BY PASSWORD = 'AnotherPassword')

USE Test

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TestDatabaseServerCertificate
GO

ALTER DATABASE Test SET ENCRYPTION ON
GO

SELECT DB_NAME(database_id), encryption_state, key algorithm, key length
FROM sys.dm_database_encryption_keys
GO

Encryption algorithms

DES

Triple DES
TRIPLE_DES_3KEY
RC2

RC4

128-bit RCy4

DESX

128-bit AES
192-bit AES
256-DIt AES

More: http://technet.microsoft.com/en-us/library/ms345262(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms345262(v=sql.110).aspx

Communication with a database

When it comes to communication we consider two
challenges

Storing credentials to a database server in a secure way
This was covered in OWASP Top 10 topic

Encrypting communication channel

SQL Server supports encrypting connection using SSL
A valid certificate is required

DEMO
Open: Configuration Tools = SQL Server Configuration Manager
Open: Properties for SQL Server Network Configuration

More
http://msdn.microsoft.com/en-us/library/msig1192(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/msi89067(v=sql.105).aspx

http://msdn.microsoft.com/en-us/library/ms191192(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

SQL Server Audit

It is @ mechanism which allows to monitor who
is doing what on which objects
There a lot of possibilities what can be audited
It is based on Extended Events, new feature
since SQL Server 2008

Audit is specialized usage of Extended Events

SQL Server Audit

DEMO: Let’s create Server-Level audit
MGMT -2 Security = Audits

Create an audit DatabaseRoleMemberChange

MGMT -> Security = Server Audit Specifications

Create a specification DatabaseRoleMemberChange related
to DatabaseRoleMemberChange event

Add any user to any role
USE Test; ALTER ROLE db_owner ADD MEMBER test
MGMT - Security = Audits

Pick the audit
Choose View Audits Logs option

SQL Server Audit

DEMO: Let’s create Database-Level audit
MGMT -2 Security = Audits

Create TestDatabaseSelect audit

MGMT -> Test database = Security =2
Server Audit Specification

Create TestDatabaseSelect specification on
SELECT event
Osoba table
[public] role

Perform a select on the Osoba table in Test DB
View TestDatabaseSelect audit

SQL Server Audit

There is another way to see audit entries

which is based on review files
DEMO

SELECT * INTO Test.dbo.SQLAudits
FROM sys.fn _get audit file(
'C:\Temp\TestDatabase*.sqlaudit', Default, Default);

SELECT * FROM Test.dbo.SQLAudits

Policy based management

Allows to apply and force policies and rules
Let's see some examples

MGMT - Management = Policy Management
Review Facets

Create a policy RecoveryModelFull for ensuring that every
database has a full recovery model

Create a condition using Database Options facet

Create a policy based on that condition and evaluate it

Create a policy for ensuring that no table is created in dbo
schema (do the same for procedure)
Create a condition using Table facet (analogously Stored Procedure)
Create a policy based on that condition and evaluate it

Try to enable that policy and try to create an object in that schema
E.g. CREATE PROCEDURE dbo.GetServerName AS SELECT @@SERVERNAME

Other important topics

SQL Profiler and ALTER TRACE risks
Backups and recovery

Backup types
Transaction logs and recovery model
High Availability
-ailover clustering
Database mirroring
_og shipping
Replication

