
Paweł Rajba
pawel@ii.uni.wroc.pl
http://kursy24.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Authentication
 Server-Level security
 Database-Level security
 Encryption in a database
 Communication with a database
 SQL Server Audit
 Policy based management
 Other imporant topics

 Windows
 Mixed mode

 Basic operation: create a login
 From MGMT studio (let’s see)
 CREATE LOGIN statement

 Logins can be:
 Local (if mixed mode)
 From Windows
▪ For users
▪ For groups (!)

 Some options
 MUST_CHANGE, DEFAULT_DATABASE = „…”,

CHECK_EXPIRATION = ON, CHECK_POLICY = ON
▪ If there is no mixed mode, one can create a local login, but

policies are not checked

 Server-Roles (actually instance level)
 A lot of builtin roles
▪ sysadmin – the highest level

▪ dbcreator

▪ diskadmin

▪ …

 Basic operations:
▪ CREATE SERVER ROLE [SomeRole]
▪ It is possibility to create custom server roles

▪ ALTER SERVER ROLE [sysadmin] ADD MEMBER [auser]

 List permissions for role
▪ sp_srvrolepermission 'securityadmin'

 Managing permissions

 Open Server properties

 Change tab to permissions

 Let’s review what is there

 Tip: one can always click „Script” button to
see what commands are behind

 Database users

 Basic operation:

▪ CREATE USER [TestUser] FOR LOGIN [CustomUser]
WITH DEFAULT SCHEMA=[dbo]
▪ After user is created there is no permission associated

 Common way to give permission is to assign a role

 Database roles
 There are 2 types:

▪ Fixed (predefined)
▪ Flexible (defined by user)

 How to create a role?
▪ From SQL

▪ CREATE ROLE rolename
▪ ALTER ROLE rolename

ADD MEMBER {username|rolename}

▪ From MGMT Studio

 List of permissions for role:
▪ sp_dbfixedrolepermission rolename

 More operations and possibilities
▪ http://technet.microsoft.com/en-us/library/ms189121(v=sql.110).aspx

 Let’s see database roles
 Application roles

 Gives possibility to assign permission to a specific application
 After connection, a sp_setapprole procedure is invoked

▪ More on http://technet.microsoft.com/en-us/library/ms190998(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms189121(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/ms190998(v=sql.110).aspx

 Managing permissions
 From MGMT Studio
▪ Open Database properties
▪ Change tab to permissions
▪ Let’s review what is there

 From SQL
▪ GRANT privilege_name_list

[ON object_name]
TO {user_name |PUBLIC |role_name}
[WITH GRANT OPTION]

▪ REVOKE privilege_name_list
[ON object_name]
FROM {user_name |PUBLIC |role_name}

 Schema
 Consider as security container for different objects

 Allows to organize objects as well
 Basic operation:
 CREATE SCHEMA <Warehouse>

[AUTHORIZATION <User>]
▪ Authorization defines an owner

 Accesing schemas: [schema].[object]
▪ E.g. CREATE TABLE [Warehouse].[Invoice] (…)

 Default schema: usually [dbo] but can be changed in
user properties

 Ownership
 Principles
▪ Owner manages objects he/she owns and anyone can revoke

him/her these privileges

▪ There is no possibility to drop user if it owns something

 Change ownership
▪ ALTER AUTHORIZATION ON <Object> TO <User>

 More
▪ ALTER AUTHORIZATION
▪ http://technet.microsoft.com/en-us/library/ms187359(v=sql.110).aspx

▪ http://msdn.microsoft.com/en-us/library/ms187359.aspx

http://technet.microsoft.com/en-us/library/ms187359(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms187359.aspx

 Ownership chains

 Let’s assume that there is a chain of calls
O1O2O3…On
and all Oi has the same owner

 Then permissions are checked only on access to O1

 Let’s see the consequences

 Practical example: roles usage

 There is default good way to give an EXECUTE
permission to a user

 The solution
▪ CREATE ROLE db_executor
GRANT EXECUTE TO db_executor
EXEC sp_addrolemember 'db_executor', 'username'

 Practical example: the ownership chain consequences
CREATE TABLE SomeData (Number INT)
GO

CREATE PROCEDURE ShowSomeData AS SELECT * FROM SomeData
GO

--ALTER AUTHORIZATION ON SomeData TO dbo --SCHEMA OWNER
--ALTER AUTHORIZATION ON ShowSomeData TO dbo --SCHEMA OWNER
--GO

SELECT * FROM sys.all_objects WHERE name LIKE '%SomeData'
GO

GRANT EXECUTE ON ShowSomeData TO Test
DENY SELECT ON SomeData TO Test
GO

EXECUTE AS USER = 'Test'
GO
SELECT * FROM SomeData
GO
EXEC ShowSomeData
GO
REVERT
GO

 There are situations in which protecting
access to a database is not enough
 Someone breach this access level protection

 Access rights are assigned in a wrong way

 Backup files are stolen

 Protection of filesystem is compromised

 And many others...
 If we have a very sensitive data, encryption in

a database is a one more layer of defense

 Encryption can be
achieved through
different ways

 Every way is implied by
a different chain of keys

 Every way has pros and
cons, so should be
evaluated according to
the requirements

More:

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

 Asymmetric Keys
 Symmetric Keys
 Certificates
 Extensible Key Management (EKM)

 Since SQL Server 2008

 Gives a possibility to manage some cryptographic
keys from hierarchy by an external source such as
Hardware Security Module (HSM)

 Column Enryption: data is encrypted explicitly

 Applications and users are impacted

 One can choose what exactly should be encrypted
– no overhead for encryption less sensitive data

 TDE: the whole database is encrypted

 Encryption is hidden and transparent, so if one can
connect, one can see the data

 Everything is encrypted, also less sensitive data

 The choice depends on business needs

 This is supported by set of built-in functions and procedures
together with key hierarchy

 Operations are performed manually
 Encrypted data needs to be stored in a varbinary column type
 Main steps

 Create database master key for every database
▪ Notice: service master key has been created when the instance has been created

 Create a certificate to protect keys
 Create a symmetric key which is protected by the certificate created in

the previous step
 Enjoy encrypting data: open the symmetric key, encrypt the data, close

the key
 Decryption is similar to encryption, but a function for decryption

should be used

USE Test

CREATE TABLE Person
(

ID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
CreditCard VARBINARY(200)

)
GO

INSERT INTO Person (ID, FirstName, LastName) VALUES(1, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(2, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(3, 'J1', 'K1');
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE CertForTest WITH SUBJECT='Test'
GO

CREATE SYMMETRIC KEY CreditCardKey WITH ALGORITHM=TRIPLE_DES ENCRYPTION BY CERTIFICATE CertForTest
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '11111') WHERE ID=1;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '22222') WHERE ID=2;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '33333') WHERE ID=3;
CLOSE SYMMETRIC KEY CreditCardKey
GO

SELECT * FROM Person
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
SELECT ID, FirstName, LastName, CONVERT(VARCHAR, DECRYPTBYKEY(CreditCard)) [Credit Card] FROM Person
CLOSE SYMMETRIC KEY CreditCardKey
GO

 TDE is one of usages of encryption by symmetric keys
 There is whole database encrypted by a symmetric key called

database encryption key
 Database encryption key is protected by certificate which is

protected by database master key or asymmetric key from EKM
 Available only on Enterprise Edition or Developer Edition
 Provides query optimization
 Main steps

 Create master key encryption password
 Create a certificate
 Backup the certificate
 Create a database encryption symmetric key
 Alter the database to set encryption on
 Optionally monitor the encryption process

 More: http://msdn.microsoft.com/en-us/library/bb934049.aspx

http://msdn.microsoft.com/en-us/library/bb934049.aspx

USE master

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE TestDatabaseServerCertificate WITH SUBJECT='Test Certificate'
GO

BACKUP CERTIFICATE TestDatabaseServerCertificate
TO FILE ='C:\Temp\TestDatabaseServerCertificate'
WITH PRIVATE KEY(

FILE = 'C:\Temp\TestDatabaseServerCertificate.private',
ENCRYPTION BY PASSWORD = 'AnotherPassword')

USE Test

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TestDatabaseServerCertificate
GO

ALTER DATABASE Test SET ENCRYPTION ON
GO

SELECT DB_NAME(database_id), encryption_state, key_algorithm, key_length
FROM sys.dm_database_encryption_keys
GO

 DES
 Triple DES
 TRIPLE_DES_3KEY
 RC2
 RC4
 128-bit RC4
 DESX
 128-bit AES
 192-bit AES
 256-bit AES

 More: http://technet.microsoft.com/en-us/library/ms345262(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms345262(v=sql.110).aspx

 When it comes to communication we consider two
challenges
 Storing credentials to a database server in a secure way

▪ This was covered in OWASP Top 10 topic

 Encrypting communication channel
▪ SQL Server supports encrypting connection using SSL

▪ A valid certificate is required

▪ DEMO
▪ Open: Configuration Tools SQL Server Configuration Manager

▪ Open: Properties for SQL Server Network Configuration

▪ More
▪ http://msdn.microsoft.com/en-us/library/ms191192(v=sql.110).aspx

▪ http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

http://msdn.microsoft.com/en-us/library/ms191192(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

 It is a mechanism which allows to monitor who
is doing what on which objects

 There a lot of possibilities what can be audited
 It is based on Extended Events, new feature

since SQL Server 2008

 Audit is specialized usage of Extended Events

 DEMO: Let’s create Server-Level audit
 MGMT  Security Audits
▪ Create an audit DatabaseRoleMemberChange

 MGMT  Security  Server Audit Specifications
▪ Create a specification DatabaseRoleMemberChange related

to DatabaseRoleMemberChange event

 Add any user to any role
▪ USE Test; ALTER ROLE db_owner ADD MEMBER test

 MGMT  Security Audits
▪ Pick the audit

▪ Choose View Audits Logs option

 DEMO: Let’s create Database-Level audit
 MGMT  Security Audits
▪ Create TestDatabaseSelect audit

 MGMT Test database Security 
Server Audit Specification
▪ Create TestDatabaseSelect specification on
▪ SELECT event

▪ Osoba table

▪ [public] role

 Perform a select on the Osoba table in Test DB

 View TestDatabaseSelect audit

 There is another way to see audit entries
which is based on review files

 DEMO
 SELECT * INTO Test.dbo.SQLAudits
FROM sys.fn_get_audit_file(

'C:\Temp\TestDatabase*.sqlaudit',Default, Default);

 SELECT * FROM Test.dbo.SQLAudits

 Allows to apply and force policies and rules
 Let’s see some examples
 MGMT Management  Policy Management
 Review Facets
 Create a policy RecoveryModelFull for ensuring that every

database has a full recovery model
▪ Create a condition using Database Options facet
▪ Create a policy based on that condition and evaluate it

 Create a policy for ensuring that no table is created in dbo
schema (do the same for procedure)
▪ Create a condition using Table facet (analogously Stored Procedure)
▪ Create a policy based on that condition and evaluate it
▪ Try to enable that policy and try to create an object in that schema

▪ E.g. CREATE PROCEDURE dbo.GetServerName AS SELECT @@SERVERNAME

 SQL Profiler and ALTER TRACE risks
 Backups and recovery
 Backup types

 Transaction logs and recovery model
 High Availability
 Failover clustering

 Database mirroring

 Log shipping

 Replication

