
Paweł Rajba
pawel@ii.uni.wroc.pl
http://kursy24.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Authentication & OAuth2
 OpenID Connect

 Request

 Response

 Rules

 Profiles

 Discovery and dynamic registration

 Playground

 It is quite popular that OAuth2 is abused for
authentication

 The most common scenario is as follows:

 User authenticates on AS

 Afterwards an application exchange code for
access token

 The assumption is that if the application is able to
get data using access token, then it means that
user properly authenticated on AS

 Where are the problems here?
 OAuth2 is an authorization framework, there is no flow

related to authentication
▪ Although authentication is a part of the OAuth2 flow

 The focus is on the client application, not on a user
▪ In other words, authorization is for the client application, not

for the user
▪ After getting access token, user is no more involved

 In a standard implementation, there is only
authorization information
▪ There is no information about the user

 When someone has a token, has the access
▪ There is no additional verification e.g. who is the proper

receiver of the token

 The main problem:

 Access token gives an application access to the
scope related to the token

▪ What means whoever has the token is able legally
perform operation

 After authentication we expect, that request is
performed only by authenticated user itself

▪ It is not possible in the OAuth2, because if another
application take over the token, it can still access services

 Very good consideration

 http://www.cloudidentity.com/blog/2013/01/02/oa
uth-2-0-and-sign-in-4/

 http://www.thread-safe.com/2012/01/problem-
with-oauth-for-authentication.html

Source: http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

 The solution is the OpenID Connect
 An authentication protocol built on top of OAuth2

▪ We can consider OpenID Connect as a OAuth2 profile which defines
a flow for authentication

 Allows to get the information about the user
▪ Adds ID Token where this information is stored

 Emerging protocol, but has many implementations
▪ Google is probably the best one

 The main website:
http://openid.net/connect/

 A very good introduction
▪ http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

 Let’s the presentation video
 https://www.youtube.com/watch?v=Kb56GzQ2pSk

▪ We will use the offline mode

http://openid.net/connect/
http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/
https://www.youtube.com/watch?v=Kb56GzQ2pSk

 To make a request the following information is
required
 Client ID

 Client Secret

 End-user authorization endpoint

 Token endpoint

 User info endpoint
 Additionally:
 grant_type = token id_token

 scope = openid profile email …

 GET

 /authorize?grant_type=token%20id_token&
scope=openid%20proflie&
redirect_uri=https%3A%2F%2Fclient%2Eexample
%2Ecom%2Fcb
HTTP/1.1

 Host: server.example.com

 Beside access_token included in OAuth2 response, one
gets id_token with the following information
 aud (audience)

▪ The client_id that this id_token is intended for.

 exp (expiration)
▪ The time after which this token must not be accepted

 sub (subject)
▪ A locally unique and never reassigned identifier for the user (subject)
▪ E.g. “24400320″ or “AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4″.

 iss (issuer)
▪ A https: URI specifying the fully qualified host name of the issuer, which

when paired with the user_id, creates a globally unique and never
reassigned identifier.

▪ E.g. “https://aol.com”, “https://google.com”, or “https://sakimura.org”.

 nonce - nonce value sent in the request.
 All these parameters are required

 The following rules should be applied
 An authorization server must only issue assertions

about user identifiers within its domain
 The client MUST verify that the aud matches

its client_id and iss matches the domain (including
sub-domain) of the issuer of the client_id

 The authorization server is responsible for managing
its own local namespace and enforcing that
each user_id is locally unique and never reassigned

 When the client stores the user identifier, it MUST
store the tuple of the user_id andiss.
The user_id MUST NOT be over 255 ASCII characters
in length

 Basic Client Profile
 Based on OAuth2 code flow
 Designed for a web-based relying parties
 Subset of OpenId Connect Core specification
 More: http://openid.net/specs/openid-connect-basic-1_0.html

Source: http://www.slideshare.net/metadaddy/openid-connect-an-overview

http://openid.net/specs/openid-connect-basic-1_0.html
http://www.slideshare.net/metadaddy/openid-connect-an-overview

 Implicit Client Profile
 Based on OAuth2 implicit flow
 Designed for a web-based relying parties
 Subset of OpenId Connect Core specification
 More: http://openid.net/specs/openid-connect-implicit-1_0.html

Source: http://www.slideshare.net/metadaddy/openid-connect-an-overview

http://openid.net/specs/openid-connect-implicit-1_0.html
http://www.slideshare.net/metadaddy/openid-connect-an-overview

 Discovery
 Allows client app to

▪ determine the identity of the End-User
▪ Based on authentication performed in Authorization Server

▪ obtain a basic profile a of End-User

 Uses WebFinger (RFC7033)
 More: https://openid.net/specs/openid-connect-

discovery-1_0.html
 Registration
 Allows client app to register on the server
 More: http://openid.net/specs/openid-connect-

registration-1_0.html

https://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html

 A very good open source provider and a set of
samples
 http://thinktecture.github.io/

 Getting started videos
 Provider introduction

▪ http://vimeo.com/91397084

 Walkthrough samples
▪ http://vimeo.com/91405115

 DEMO

http://thinktecture.github.io/
http://vimeo.com/91397084
http://vimeo.com/91405115

