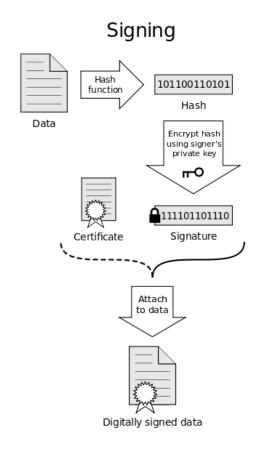
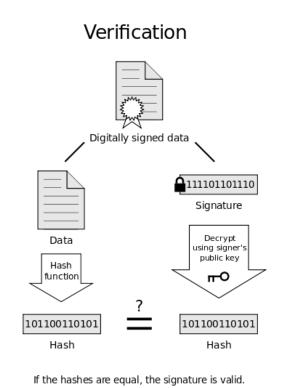
Paweł Rajba <u>pawel@ii.uni.wroc.pl</u> <u>http://kursy24.eu/</u>

Application Security Certificates

Agenda

- Introduction
- Certificate structure
- Extensions
- Usages
- PKCS
- Encodings & formats
- Revoking certificates
- Check if certificate if trusted
- Certificates on the market
- Qualified signatures
- Certificate Signing Request


- Certificate is an electronic document which includes:
 - Public key of the subject
 - Identity description of the subject
 - Digital signature of the trusted third party
 - Expiration date
- Main goal
 - Having a document which proves your identity in transactions
 - Something similar to driving licence in real life


PKI

- Stands for Public Key Infrastructure
- Goal: system for distribution public keys
- Main constituents
 - Certificates
 - Certificates Authorities (CAs)
 - Method for revoking certificates
 - Method of evaluating chain of certificates
 - General operations
 - Signing: private key to sign, public key to verify signature
 - Encryption: public key to encrypt, private key to decrypt

- CA
 - Stands for Certificate Authority
 - A unit which everyone "trust"
 - Every CA has a set of Root CA's
 - https://www.symantec.com/page.jsp?id=roots
 - https://www.symantec.com/content/en/us/about/media /repository/root-certificates.pdf
 - We consider
 - Root CA self-signed certificates
 - Intermediate CA certficate signed by another CA

Digital signature – quick recap

- Certificates systems
 - PGP, SPKI/SDSI
 - decentralized, based on WOT
 - X.509
 - based on hierarchy of certficate authorities
- In this presentation we will focus on X.509

X.509: Introduction

- ITU-T standard which allows to create a hierarchical Public Key Infrastructure (PKI)
- Built on top of X.500 family
 - http://pl.wikipedia.org/wiki/X.500
- Currently X.509 usually refers to IETF's PKIX Certificate and CRL Profile of the X.509 v3 certificate standard, as specified in RFC 5280
 - http://tools.ietf.org/html/rfc5280
- PKIX Public Key Infrastructure X.509
 Working Group (closed in 2013)

X.509: Structure

- Certificate
 - Version
 - Serial Number
 - Algorithm ID
 - Issuer
 - Validity
 - Not Before
 - Not After
 - Subject
 - Subject Public Key Info
 - Public Key Algorithm
 - Subject Public Key
 - Issuer Unique Identifier (optional)
 - Subject Unique Identifier (optional)
 - Extensions (optional)
 - ...
- Certificate Signature Algorithm
- Certificate Signature

X.509: Extensions

- Give additional information about certificate
- Uniquely identified by OIDs
 - Based on ASN.1 syntax
 - http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
 - Registry one can find here:
 - http://www.alvestrand.no/objectid/
- Extension may be
 - Critical, then certificate system must reject certificate if it is
 - Not recognized or
 - Cannot be processed
 - Not-critical, then certificate system
 - May ignore extension if it is not recognized and
 - Must process if it is recognized

X.509: Extensions

- Examples
 - Subject Key Identifier (OID: 2.5.29.14)
 - A hash derived from the public key of certficate
 - Authority Key Identifier (OID: 2.5.29.35)
 - A hash based on public key of an issuer cert (SKI)
 - or based on issuer name and serial number
 - CRL Distribution Points (OID: 2.5.29.31)
 - A place when information about revocation can be found
 - Netscape Certificate Type (OID:2.16.840.1.113730.1.1)
 - Define certficate subject to be SSL client, SSL server or CA
 - Basic Constraints (OID: 2.5.29.19)
 - Determine if subject can act as a CA
 - Key Usage (OID: 2.5.29.15)
 - Determine set of allowed usages
- Full list of extensions is defined in RFC:
 - http://tools.ietf.org/html/rfc5280#section-4.2.1

X.509: Usages

- Last 3 examples in previous slide define key usage limitation
- Let's see the definitione of Key Usage field:

```
KeyUsage ::= BIT STRING {
     digitalSignature
     nonRepudiation
              -- recent editions of X.509 have
              -- renamed this bit to contentCommitment
     keyEncipherment
                         (2),
     dataEncipherment
     keyAgreement (4),
     keyCertSign
                      (5),
     cRLSign
                  (6),
     encipherOnly
                       (7)_{1}
     decipherOnly
                       (8)
```

- Good summary from IBM
 - http://publib.boulder.ibm.com/infocenter/domhelp/v8ro/index.jsp?topic=%2F com.ibm.help.domino.admin.doc%2FDOC%2FH_KEY_USAGE_EXTENSIONS FOR_INTERNET_CERTIFICATES_1521_OVER.html

X.509: Usages

- Each certficate is intended to specific usages
 - E.g. Web servers, e-mails, code signing
- VeriSign introduces classes for types of certs:
 - Class 1 for individuals, intended for email.
 - Class 2 for organizations, for which proof of identity is required.
 - Class 3 for servers and software signing, for which independent verification and checking of identity and authority is done by the issuing certificate authority.
 - Class 4 for online business transactions between companies.
 - Class 5 for private organizations or governmental security.
 - https://www.symantec.com/page.jsp?id=roots

However, this is not a part of PKI standard

PKCS Standards

- A set of public-key cryptography standards
- Published by RSA Security Inc. in early 90s
 - Main goal was to promote cryptography techniques to which they had patents
 - Currently, most of them are in the public domain and taken care of organization like IETF and PKIX
- Let's review shortly standards on the next slides
 - List can be found: http://en.wikipedia.org/wiki/PKCS

PKCS Standards

	Version	Name	Comments
PKCS #1	2.1	RSA Cryptography Standard ^[1]	See RFC 3447. Defines the mathematical properties and format of RSA public and private keys (ASN.1-encoded in clear-text), and the basic algorithms and encoding/padding schemes for performing RSA encryption, decryption, and producing and verifying signatures.
PKCS #2	-	Withdrawn	No longer active as of 2010. Covered RSA encryption of message digests; subsequently merged into PKCS #1.
PKCS #3	1.4	Diffie-Hellman Key AgreementStandard ^[2]	A cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel.
PKCS #4	-	Withdrawn	No longer active as of 2010. Covered RSA key syntax; subsequently merged into PKCS #1.
PKCS #5	2.0	Password-based Encryption Standard ^[3]	See RFC 2898 and PBKDF2.
PKCS #6	1.5	Extended-Certificate Syntax Standard ^[4]	Defines extensions to the old v1 X.509 certificate specification. Obsoleted by v3 of the same.
PKCS #7	1.5	Cryptographic Message Syntax Standard ^[5]	See RFC 2315. Used to sign and/or encrypt messages under a PKI. Used also for certificate dissemination (for instance as a response to a PKCS#10 message). Formed the basis for S/MIME, which is as of 2010 based on RFC 5652, an updated Cryptographic Message Syntax Standard (CMS). Often used for single sign-on.
PKCS #8	1.2	Private-Key Information Syntax Standard ^[6]	See RFC 5208. Used to carry private certificate keypairs (encrypted or unencrypted).

PKCS Standards

PKCS #9	2.0	Selected Attribute Types ^[7]	See RFC 2985. Defines selected attribute types for use in PKCS #6 extended certificates, PKCS #7 digitally signed messages, PKCS #8 private-key information, and PKCS #10 certificate-signing requests.
PKCS #10	1.7	Certification Request Standard ^[8]	See RFC 2986. Format of messages sent to a certification authority to request certification of a public key. See certificate signing request.
PKCS #11	2.20	Cryptographic Token Interface ^[9]	Also known as "Cryptoki". An API defining a generic interface to cryptographic tokens (see also Hardware Security Module). Often used in single sign-on, public-key cryptography and disk encryption ^[10] systems. RSA Security has turned over further development of the PKCS#11 standard to the OASIS PKCS 11 Technical Committee.
PKCS #12	1.0	Personal Information Exchange Syntax Standard ^[11]	Defines a file format commonly used to store private keys with accompanying public key certificates, protected with a password-based symmetric key. PFX is a predecessor to PKCS #12. This container format can contain multiple embedded objects, such as multiple certificates. Usually protected/encrypted with a password. Usable as a format for the Java key store and to establish client authentication certificates in Mozilla Firefox. Usable by Apache Tomcat.
PKCS #13	_	Elliptic Curve CryptographyStandard[12]	(Under development as of 2012.)[13]
PKCS #14	_	Pseudo-random Number Generation	(Under development as of 2012.)[13]
PKCS #15	1.1	Cryptographic Token Information Format Standard ^[14]	Defines a standard allowing users of cryptographic tokens to identify themselves to applications, independent of the application's Cryptoki implementation (PKCS #11) or other API. RSA has relinquished IC-card-related parts of this standard to ISO/IEC 7816-15. ^[15]

Encodings & formats

PEM

- Encoded with Base64
- Doesn't support storing the whole path of certficates
- Doesn't support storing combination of cerficate and private key
- Extentions: .pem, .crt, .cer, .cert, .key
- Popular in open source solutions (e.g. Apache uses PEM)

DER

- Binary representation
- Doesn't support storing the whole path of certficates
- Doesn't support storing combination of cerficate and private key
- Extensions: .cer, .der

PKCS#7

- Supports storing whole chain of certificates
- Doesn't support storing private key
- Extensions: .p7b, .p7c
- PKCS#12 (previously .pfx was predecessor of PKCS#12)
 - Supports storing whole path of certificates
 - Supports storing private key
 - Extensions: .p12, .pfx

X.509: Revoking certificates

- Certificate revocation allows to avoid certificates which shouldn't be trusted no longer
- There are 2 options: CRL and OCSP
- CRL
 - A file with a list of revoked certificates
 - Location included as an extension field in certificate
 - Signed by CA's private key
 - Let's see sample list from https://access.redhat.com/home
- OCSP (Online Certificate Status Protocol)
 - A service which can answer about the status of certificate
 - More efficient than parsing CRL lists
 - Read more
 - http://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
 - http://www.ietf.org/rfc/rfc256o.txt
 - On lab you will be asked to play with this more ©

Check if certificate trusted

- There 2 parts of certificate validation process
 - Path Discovery
 - Path Validation
 - http://tools.ietf.org/html/rfc3379
 - Let's see main points of an algorithm
 - http://en.wikipedia.org/wiki/Certification_path_validation_algorithm
- Trust is based on Trusted Store Certificate in the system
- DEMO
 - Let's see the list of trusted certificates in IE
 - Let's see the chain of certificates for
 - https://www.symantec.com/index.jsp

Certificates on the market

- We consider 3 levels of validation
 - DV Domain Validation
 - Only domain is checked in DNS systems
 - No information about organization in included
 - Available in a few minutes
 - OV Full Organization Validation
 - Additionally organization is checked on the basis of organization documentation
 - Available in 1-2 days
 - EV Extended Validation
 - More checks are performed: if company has a bank account, there is a phone call with set of questions, etc.
 - Available in 1-10 days
 - Only this type gives a green bar in a web browser

Certificates on the market

- What means a guarantee of certificate?
 - If something is wrong with a certificate or CA private key, an issuer is obliged to pay compensation
- There is a possibility to buy a wildcard certificate
 - *.domain.com
- Who sells certificates
 - VeriSign (Symantec ownership)
 - Thawte, Geotrust (part of VeriSign)
 - Comodo
 - GoDaddy
 - TrustWave
 - Certum (in Poland)

Qualified signatures

- Qualified signature (podpis kwalifikowany)
 - A digital dignature based on qualified certificate
 - Usually, if you buy a qualified signature, you get a package
 - Certificate
 - Device with private key
 - Software intended to make signatures
 - In Poland only National Certification Center is allowed to decide who should be able to issue such certificates
 - But it doesn't issue them on its own
 - Let's see their website: http://www.nccert.pl/
 - Read more: http://pl.wikipedia.org/wiki/Podpis_kwalifikowany
 - Let's see a short list o applications there

Certificate Signing Request

- Applicant generates public/private key pair
 - Private key keeps in secret
- Generates CSR (Certificate Signing Request)
 - A file with information about applicant
 - CSR file is signed by private key of applicant
- CSR file with additional documentation is sent to CA
- If everything is ok, CA sent back a certificate signed with a private key of CA

Distinguished Name (DN)

Business name / Organisation

Department Name / Organisational Unit

Town/City

Province, Region, County or State

Country

An email address

Information

Source: http://en.wikipedia.org/wiki/Certificate_signing_request

References

- SPKI
 - http://pl.wikipedia.org/wiki/SPKI
- PGP
- http://pl.wikipedia.org/wiki/Pretty_Good_Privacy
- X.509 & PKI
 - http://en.wikipedia.org/wiki/X.509
 - http://technet.microsoft.com/en-us/library/cc737264(v=ws.10).aspx
- Encoding & formats
 - http://myonlineusb.wordpress.com/2011/06/19/what-are-the-differences-between-pem-der-p7bpkcs7-pfxpkcs12-certificates/
 - http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file
 - https://support.ssl.com/Knowledgebase/Article/View/19/o/der-vs-crt-vs-cer-vs-pem-certificates-and-how-to-convert-them
- Sample files
 - http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/sample-openssl-usage.htm
- Calculating hashes (very good)
 - http://certificateerror.blogspot.com/2011/02/how-to-validate-subject-key-identifier.html
- Good Knowledge Base
 - https://access.redhat.com/site/documentation/en-US/Red Hat Certificate System/8.o/html/Admin Guide/Standard X.509 v3 Certificate Extensions.html
 - https://certyfikatyssl.pl/faq.html
- Checking trust chain of certificates
 - http://www.oasis-pki.org/pdfs/Understanding_Path_construction-DS2.pdf
 - http://www.herongyang.com/PKI/HTTPS-IE-8-View-Server-Certificate-Path.html
 - http://technet.microsoft.com/en-us/library/cc962065.aspx
 - http://en.wikipedia.org/wiki/Extended_Validation_Certificate
 - http://blog.securism.com/2009/01/summarizing-pki-certificate-validation/
- Managing and obtaining certificates
 - http://msdn.microsoft.com/en-us/library/windowsazure/ggg81g2g.aspx
- Related RFC documents
 - http://tools.ietf.org/html/rfc3280, http://tools.ietf.org/html/rfc3279, http://tools.ietf.org/html/rfc3280, http://tools.ietf.org/html/rfc4055, http://tools.ietf.org/html/rfc4491